Sains Malaysiana 53(3)(2024): 719-731
http://doi.org/10.17576/jsm-2024-5303-18
Mathematical
Modelling of a Rumour Spreading with the Attitude of
Adjusting Mechanisms
(Pemodelan Matematik bagi Penyebaran Khabar Angin dengan
Mekanisme Penyesuaian Sikap)
NORHAYATI ROSLI1,2,*, MUHAMMAD FAHMI AHMAD
ZUBER1 & ALI TURAB3
1Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
2Centre of Excellence for Artificial Intelligence &
Data Science, Universiti Malaysia Pahang Al-Sultan
Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan,
Pahang, Malaysia
3School of Software, Northwestern Polytechnical University, Xian, Shaanxi, 710072, China
Received: 28 September 2023/Accepted: 15 February 2024
Abstract
With the advent of
the internet, social media of Facebook and Twitter, as well as the
communication technology of WhatsApp and Telegram, the speed and scope of the rumour dissemination has been expanded. Understanding the
characterization of rumour dissemination and how it
spreads can help in mitigation measures to avoid the spread of the rumour. Therefore, it is crucial to propose a mathematical
model, and in particular this paper is concerned with the epidemic model to
understand the dissemination of the rumour in social
network. The mechanism of rumour propagation is
behaving like infectious diseases spread; hence this research adopted the
epidemiological model approach. In this network, the compartment is divided
into susceptible, ignorant, propagation and stiflers.
The basic influence number, the equilibrium points of rumour-free
and the endemic equilibrium state were obtained and discussed. For the local
stability, the Next Generation Matrix was used. Numerical simulation is
performed to understand the dynamics of the spread of rumour in a population or social networks, its impact in a population, and adjusting
mechanisms in curbing the spread of rumour.
Keywords: Adjusting mechanism; mathematical model; rumour spreading; stability
Abstrak
Dengan kemunculan internet, media sosial seperti Facebook dan Twitter,
serta teknologi komunikasi seperti WhatsApp dan Telegram, penyebaran khabar
angin tersebar meluas dan berlaku dengan pantas. Memahami ciri penyebaran
khabar angin dan bagaimana ia merebak dapat membantu dalam langkah mitigasi
untuk mengawal penyebarannya. Oleh itu, penting untuk mencadangkan model
matematik dan kajian ini membincangkan model epidemik untuk memahami penyebaran
khabar angin dalam rangkaian media sosial. Mekanisme penyebaran khabar angin
berperilaku seperti penyebaran penyakit berjangkit; oleh itu, penyelidikan ini
mengambil pendekatan model epidemiologi. Dalam rangkaian ini, kompartmen
dibahagikan kepada populasi rentan, populasi yang tidak ambil tahu dan populasi
penyebar dan populasi penghalang. Nombor pengaruh asas, titik keseimbangan
tanpa khabar angin dan keadaan keseimbangan endemik diperoleh dan dibincangkan.
Untuk kestabilan tempatan, Matriks Generasi Seterusnya digunakan. Simulasi
berangka dijalankan untuk memahami dinamik penyebaran khabar angin dalam
populasi atau rangkaian sosial, kesannya dalam populasi dan mekanisme
penyesuaian dalam mengekang penyebaran khabar angin.
Kata kunci: Mekanisme perubahan; model matematik; penyebaran
khabar angin; stabiliti
REFERENCES
Al-Tuwairqi, S., Al-Sheikh, S. & Al-Amoudi, R. 2015. Qualitative analysis of a rumor
transmission model with incubation mechanism. Open Access Library Journal 02: 1-12.
Chen, G.H. 2019. ILSCR rumor spreading model to discuss the control of
rumor spreading in emergency. Physica A:
Statistical Mechanics and its Applications 522: 88-97.
Daley, D. & Kendall, D. 1964. Epidemics and rumours. Nature 204(4963): 1118.
Fahmi, M., Norhayati, R. & Noryanti, M.
2021. The transmission dynamic of the COVID 19 outbreak: A predictive
dashboard. Sains Malaysiana 50(11): 3439-3453.
Li, D. & Ma, J. 2017. How the government’s punishment and
individual’s sensitivity affect the rumor spreading in online social networks. Physica A 469: 284-292.
Li, M., Zhang, H., Georgescu, P. & Li, T.
2021. The stochastic evolution of a rumor spreading model with two distinct
spread inhibiting and attitude adjusting mechanisms in a homogeneous social
network. Physica A: Statistical Mechanics
and Its Application 562: 125321.
Maki, D.P. & Thompson, M. 1973. Mathematical Models and
Application: With Emphasis on the Social, Life and Management Sciences. Englewood Cliffs, New Jersey: Prentice-Hall.
Xia, L.L., Jiang, G.P., Song, R. & Song, Y.R. 2015. Rumor spreading
model considering hesitating mechanism in complex social networks. Physica A 437: 295-303.
Zan, Y., Wu, J., Li, P. & Yu, Q. 2014. SICR
rumor spreading model in complex networks: Counterattack and self-resistance. Physica A: Statistical Mechanics and its
Applications 405: 159-170.
Zanette, D. 2001. Critical
behavior of propagation on small-world networks. Physical Review E 64:
050901.
Zhang, Y. & Xu, J. 2015. A rumor spreading model considering the cumulative effects of
memory. Discrete Dynamics in Nature and Society 2015:
204395.
Zhao, L., Qiu, X., Wang, X. & Wang, J.
2013. Rumor spreading model considering forgetting and remembering mechanisms
in inhomogeneous networks. Physica A 392: 987-994.
Zhao, X. & Wang, J. 2014. Dynamical behaviors of rumor spreading
model with control measures. Abstract and Applied Analysis 2014:
247359.
Zhou, Y., Zhang, J., Zhu, C. & Wang, H. 2022. Modelling and
analysis of rumour propagation based on stochastic
optimal control. Alexandria Engineering Journal 61(12): 12869-12880.
*Corresponding author; email: norhayati@umpsa.edu.my
|